Influence of Nonenzymatic Posttranslational Modifications on Constitution, Oligomerization and Receptor Binding of S100A12

نویسندگان

  • Kerstin Augner
  • Jutta Eichler
  • Wolfgang Utz
  • Monika Pischetsrieder
چکیده

This study examined the effect of methylglyoxal (MGO)-derived nonenzymatic posttranslational modifications (nePTMs) on the binding affinity of S100A12 to its natural receptor for advanced glycation end-products (RAGE). Binding of MGO-modified S100A12 to RAGE decreased significantly with increasing MGO concentration and incubation time. Ca(2+)-induced S100A12 hexamerization was impaired only at higher MGO concentrations indicating that the loss of affinity is not predominantly caused by disturbance of ligand oligomerization. nePTM mapping showed carboxyethylation of lysine (CEL) and the N-terminus without preferential modification sites. Besides, hydroimidazolone, hemiaminals, argpyrimidine, and tetrahydropyrimidine rapidly formed at R21. Even at the highest modification rate, hexamerization of synthesized CEL-S100A12 was unaffected and RAGE-binding only slightly impaired. Thus, nePTMs at R21 seem to be the major cause of MGO-induced impairment of S100A12 oligomerization and RAGE binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Nonenzymatic Glycation of Transferrin and its Effect on Iron -Binding Antioxidant Capacity

Objective(s) Nonenzymatic glycosylation (glycation) occurs in many macromolecules in aging and diabetes due to exposure of biomolecules to high level of glucose. Glycation can changes function, activities and structure of many biomolecules. Considering this important role of transferrin (Trf) in iron transport and antioxidant activity in plasma this study was carried out to investigate the eff...

متن کامل

Calgranulins may contribute vascular protection in atherogenesis.

S100A8, S100A9 and S100A12 are considered proinflammatory mediators of atherosclerosis. Known as calgranulins, they are major components of neutrophils and are upregulated in macrophages and foam cells. They influence leukocyte recruitment, and may propagate inflammation by binding TLR4 and/or receptor for advanced glycation endproducts (RAGE). However, the receptors for calgranulins remain an ...

متن کامل

Decreased Expression Levels of S100A12 and RAGE May Be Associated with Chronic HBV Infection

Background and Aims: Engagement of the receptor for advanced glycation end products (RAGE) and its ligand “S100A12 protein” induce a cascade of reactions that eventually might lead to develop an inflammatory response dependent on NF-κB. Although involvement of S100A12 and RAGE in some autoimmune disease have proved, in chronic hepatitis B (CHB) infection functions of the prote...

متن کامل

Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein

Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...

متن کامل

Structural polymorphism in the N-terminal oligomerization domain of NPM1.

Nucleophosmin (NPM1) is a multifunctional phospho-protein with critical roles in ribosome biogenesis, tumor suppression, and nucleolar stress response. Here we show that the N-terminal oligomerization domain of NPM1 (Npm-N) exhibits structural polymorphism by populating conformational states ranging from a highly ordered, folded pentamer to a highly disordered monomer. The monomer-pentamer equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014